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SUMMARY

An experimental study was conducted on the combined effects of using JP-8 fuel in conjunction with thin thermal
barrier coatings on the specific fuel consumption and emissions of UHC, NO, and smoke of a DI diesel engine. The
experiments were conducted on a Ricardo Hydra single-cylinder DI diesel engine. Thin ceramic thermal barrier coatings
were applied to various combustion chamber surfaces including the piston crown, cylinder head, and cylinder liner.
Tests were run with the insulated surfaces installed individually in the engine, and with all three coated parts installed
together. The results were compared with those obtained from the baseline all-metal engine, and the results from all
cases with JP-8 fuel were compared with similar runs conducted with hexadecane as a baseline fuel. The emissions and
fuel consumption were observed for each engine configuration and fuel over a test matrix of operating conditions
consisting of three engine speeds, three load levels, and three injection timings.

The engine performed satisfactorily on JP-8 fuel. No abnormal or adverse operating characteristics were observed
in either the baseline all-metal configuration, or with any of the insulation schemes investigated. It is therefore
concluded that JP-8 is a viable alternative fuel for use in DI diesel engines with thin ceramic thermal barrier coatings
applied to one or more combustion chamber surfaces.

For the Ricardo Hydra DI diesel engine, insulating the various surfaces offered mixed results with either performance
or emissions being improved or compromised depending on the insulation scheme and the operating conditions. It was
generally found that different operating conditions affected the engine in diverse ways, with speed, load, and to a lesser
extent, injection timing, affecting the relative levels of emissions and BSFC for the various insulation schemes. In
analyzing the results, greater emphasis was placed on the high-speed (2500 rpm), high-load (16 N-m torque) condition
because of the applicability to typical ground-based vehicle applications and because changes in BSFC and emissions
have the greatest total impact under these conditions. Even then, no individual scheme was significantly more beneﬁmal
than any of the others. '

The individual coating schemes investigated can produce improvements in one or more categories of emissions, but
at the expense of an increase in another category. The choice of one insulation scheme over another, depends on which
emission product is considered most critical. If hydrocarbons are the major emission concern, then coating the head is
the best choice, with the added benefit of providing the greatest improvement in fuel economy. If oxides of nitrogen
are of greatest importance, then coating the piston is the best choice. If soot is the major consideration, then coating
all of the combustion chamber surfaces is the only configuration that consistently reduced soot emission below the
baseline level, while also significantly improving UHC emissions (but at the expense of slightly increased NO and fuel
consumption). Given all of the trade-offs, (see Table 4.1, page 24) the best choices might well be either coating all
surfaces of the combustion chamber to achieve reduced particulate and hydrocarbon emissions with little effect on NO
emission and fuel consumption, or the coating the head surface only to achieve the improved fuel economy and UHC
emission.

iii



1. INTRODUCTION

1.1 PROBLEM STATEMENT

The 6bjective of this work was to study the effects of using thin ceramic thermal barrier coatings in conjunction with
JP-8 jet fuel on the performance and emissions of a direct injection (DI) diesel engine. The Army has been interested
in the use of ceramics in diesel engines for a number of years, and several studies have been conducted on various
aspects of this topic [1-23]. The DoD has also investigated the suitability of JP-8 jet fuel for use in DI compression
ignition engines. This study focused on the use of JP-8 fuel in a Ricardo Hydra DI diesel engine with thin ceramic
coatings applied to the piston crown, the cylinder head inner surface and the cylinder liner for the purpose of
determining if this combination of fuel and selective insulation of combustion chamber surfaces yields any particular
advantages or disadvantages in terms of fuel economy and emissions. Each of the ceramic insulated components was
tested individually in the engine under a variety of operating conditions (speed, load and injection timing). Additionally,
a set of tests were conducted with all insulated components installed simultaneously. Of particular interest were the
effects of the coatings and fuel on brake specific fuel consumption, NOx emission, unburned hydrocarbon emission,
and soot emission. A pure hydrocarbon fuel, Hexadecane (Cietl;,), was used as a baseline fuel for comparison purposes.

1.2 PERTINENT LITERATURE REVIEW

LHR Engines

Diesel engines reject about two-thirds of the energy content of the fuel, leaving one-third as useful power output.
Approximately one-third of the chemical energy is rejected through the cooling system, while exhaust heat accounts
for an additional one-third. Low heat rejection (LHR) engines reduce heat transfer through the walls of the combustion
chamber, to the coolant, and have the potential to harnesses some of the rejected energy. Ceramics have been used for
thermal barrier applications in diesel engines to reduce heat loss to the cooling system.

The selection of materials with low conductivity, good high temperature strength, low coefficient of expansion, and
low cost has been the focus of many studies. However, it has been difficult to identify materials that satisfy all these
requirements. Silicon nitride has often been used due to its high temperature strength and toughness, although it is not
the best insulator [2,4,8,9,10,11]. Partially stabilized Zirconia (PSZ) has also been widely used because of its good
insulating properties. Wong et.al [10] studied the improvement in engine efficiency as a function of coating thickness
and material. They found that thin coatings offered the best thermal efficiency. The optimal thickness for PSZ ranged
from 0.25-0.5 mm for the cylinder liner, and was around 0.1 mm for the non-friction parts; the piston crown and
cylinder head. '

The prevailing thought has been that thermal efficiency should improve with a reduction in heat rejection. However,
the results of many investigations have shown that simply insulating the combustion chamber surfaces to reduce heat
loss does not necessarily increase efficiency. The way in which the resulting hot surfaces affect both the combustion
process and volumetric efficiency plays a significant role.

3

Various theoretical studies using different combinations of combustion chamber insulation of naturally aspirated,
turbocharged, and turbocompound engines [12,13,14,15] have shown that LHR engines significantly reduce heat
rejection. The increase in thermal efficiency, however, has been small. The turbocompound and turbocharged engines
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have recorded the most improvement. Kamo and Bryzik [1] predicted the effects of combustion chamber insulation on
the performance of both naturally aspirated and turbocharged engines. They simulated a turbocharged engine that was
insulated using PSZ. The results showed that insulating the piston and cylinder head only, reduced the heat rejection
by 41 percent and increased thermal efficiency by 1.4 percent. Insulating the liner only reduced the heat rejection by
55 percent and increased thermal efficiency by 1.2 percent. The non-turbocharged insulated engine increased thermal
efficiency roughly 0.5 percent for zero heat rejection. Miyairi et. al [2] indicated that theoretical models used in
calculating the performance of LHR engines could not sufficiently simulate the stratified combustion process of a diesel
engine. They experimentally studied the effect of selective insulation of the cylinder head, piston crown, and cylinder
liner, using thick monolithic ceramic inserts, on the performance and emission characteristics of a single-cylinder,
normally-aspirated DI diesel engine. They showed that fuel ecohomy and NO emissions of the engine were improved
by insulating the cylinder head and liner, but were made worse by insulating the piston crown. Part of the degradation
in BSFC with the insulated piston was attributed to the increased reciprocating mass due to the heavy monolithic ceramic

_ piston crown.  Wong et. al [10] concluded that these studies, in total, showed inconclusive and contradictory effects

of thermal barriers on engine efficiency.

Cummins engine company experimentally determined the effect of insulated combustion chambers on performance
using an insulated piston and cylinder head separately [16]. The cylinder head and the piston combustion surface were
plasma spray coated to a thickness of 1.25 mm. The insulated piston results showed a loss in thermal and volumetric
engine efficiency, but the insulated piston was effective in reducing engine heat rejection to the coolant and increasing
exhaust gas energy. Insulation of the cylinder head resulted in no change in the brake specific fuel consumption or heat
rejection. '

Alkidas [17] experimentally investigated performance and emission characteristics of an uncooled, thermally-
insulated, single-cylinder, open-chamber diesel engine. The results of his investigation showed this LHR engine had
lower volumetric efficiency, higher BSFC, and higher NO/NOx and smoke emissions. Woshni et. al [18] theorized that
the deterioration in BSFC from metal to insulated engine by direct component substitution, without component
optimization, was due to an increase in heat transfer in the insulated engine. He proposed that the increase is a result
of the thinning of the reactive boundary layer caused by higher wall temperature. Cheng et al [19] compared the
performance and heat transfer characteristics of a single-cylinder diesel engine. They ran the engine in both metal and
ceramic-coated configurations at the same speed, load and airflow rates. They found the insulated engine had a higher
BSFC that was attributable to a slower combustion process since the complete burn duration in the insulated engine was
longer. They also found the exhaust and the time averaged surface temperature of the insulated engine were higher. In
contrast to Woshni [18], Cheng et al [19] found that the total heat transfer in the insulated engine was lower. They
blamed the poorer BSFC on a degradation of the combustion system due perhaps to the poor performance of the injector
in the hot environment [17]. To optimize engine performance comparisbn, they suggested a redesign of the injector
system to match the charge environment.

Mavinahally, et. al [23] also discuss matching the fuel injection system to the different combustion characteristics
of the LHR engine. They found that a combination of high injection pressure and retarded injection timing resulted in
improved BSFC on the order of five percent for a six-cylinder, turbocharged, DI diesel with thin thermal barrier coatings
on the piston crown, head, and cylinder liner.

Assanis, et. al [2] conducted a series of tests on a supercharged DI diesel engine with and without piston surface




insulation to determine the effect of ceramic coating the piston crown on engine performance and emissions. In their
study, they emphasized the significance of the heat release profile, and indicated that insulating the piston with a thin
coating of PSZ resulted in better engine efficiency and reduced emissions over the baseline engine.

Dickey [1] studied the effect of applying thin ceramic coatings to all combustion chamber surfaces in a supercharged
single-cylinder Caterpillar 1Y-540 DI diesel engine. The results showed decreased thermal efficiency, but also
decreased specific NOx and UHC for the ceramic coated engine relative to the baseline engine, especially at higher
loads.

JP-8 Fuel
: 4

To reduce the logistical problems associated with the different fuel requirements of ground vehicles and aircraft, the
Department of Defense (DoD) has sought to establish a single fuel suitable for both applications. Diesel fuel
composition varies widely. Typically, the choice of fuel depends on engine design and usage. Lighter, distillate fuels
are used in higher speed engines, while heavier (residual) fuels are reserved for slower, larger engines. The chemical
composition of diesel fuels depends mainly on the composiiion of the crude oil, from which it is distilled and which
varies widely in physical characteristics, and the subsequent treatment during the refining process. The thinner the crude,
the higher the proportion of distillate components. The composition of crude oil is mainly hydrocarbons with traces of
other elements such as sulfur, nitrogen and oxygen.

'The molecular pattern of hydrogen and carbon atoms has a strong influence on the ignition quality and low-
temperature fluidity of diesel fuel. A fuel with a lower cetane number has a lower ignition quality and a longer ignition
delay period. Increased ignition delay can lead to increased diesel knock and rougher running at lighter loads.
Therefore the quality of the fuel needs to be carefully addressed while trying to maintain the ease and cost of refinement.
In this regard, JP-8 jet fuel has shown considerable promise as a single-source fuel.

JP-8 is essentially the same as commercial Jet A-1 fuel with the exception of the addition of three additives, a
corrosion inhibitor, an icing inhibitor, and an antistatic additive. Relative to Jet A-1, the corrosion inhibitor in JP-8
(usually dilinoliec acid) reduces oxidative wear of engine parts, particulary rotary fuel pump components which are
susceptible to increased wear with the use of low lubricity fuels (24). Table 1.1 (excerpted from ref. 25 and 26)
compares typical values of selected fuel properties for JP-8 and Number 2 Diesel fuel. Compared to No. 2 Diesel, JP-8
is a lighter, less viscous, more volatile fuel with a 12 percent lower cetane number, comparable gravimetric heating
value, and somewhat lower (5 - 8 percent) volumetric heating value.

A number of laboratory and field tests on a variety of compression ignition engines have established the suitability
of JP-8 as a fuel for use in DoD diesel powered ground equipment. Owens, et. al (27) reported on laboratory engine
tests and vehicle field tests that compared engine performance characteristics for operation on both JP-8 and No. 2
diesel fuel. Five different diesel engines, representative of engines used in a variety of ground-based equipment, were
subjected to either the 210 hour Army Coordinating Research Council (ACRC) cycle for wheeled vehicles or the 240
hour ACRC cycle for tracked vehicles, depending on the typical application of the engine. The test engines included
examples of two and four strok\e, normally aspirated-and turbocharged, and in-line 6, V6, and V8 designs. Field tests
were conducted on eight different vehicles ranging from battle tanks and armored personnel carriers to utility cargo
vehicles. Some conclusions that were drawn from the tests were: (1) No drivability or idle problems occured with JP-8;
(2) JP-8 reduced the acceleration of six of the eight vehicles tested and increased it for one of the vehicles; (3) Maximum




power thermal efficiency increased with JP-8 for three of the five engines tested, and the increase was sufficient to off-
set the reduced volumetric energy content so that improved range would be projected for vehicles powered by these
engines; (4) JP-8 produces less contamination of engine lubricant, improves top ring wear, and produces less combustion
chamber deposits than DF-2; (5) Use of JP-8 resulted in severe wear of the rotary fuel injection pump of one of the
laboratofy test engines, while a 10,000 mile vehicle test with the same model engine did not produce unusual wear.

Lestz and Lepera (26) reported on a U.S. Army technology demonstration of the use of JP-8 fuel in ground vehicles.
The two and one-half year demonstration program was conducted at Fort Bliss, Texas between 1989-1991 and involved
over 2,800 pieces of military ground equipment, accumulating over 71,00 hours of operation and 2,621,000 miles.
Results of the demonstration showed that: (1) There was no statistically significant difference in fuel consumption
between JP-8 and the reference No. 2 diesel fuel (DF-2); (2) Power loss was evident in a few types of equipment, but
it was commensurate with the reduced volumetric heating value of ﬁ’-S; (3) No catastrophic failures could be attributed
to the use of JP-8; (4) JP-8 is suitable for use in diesel powered military ground equipment.

Table 1.1 - Comparison of JP-8 and No. 2 Diesel Properties

Property No. 2 Diesel JP-8
Specific Gravity at 15 °C 0.85 0.80
Flash Point, °C 83 45.6
Kinematic Viscosity at 40°C, ¢St 2.95 1.25
Sulfur, mass % 0.40 0.07
Net Heat of Combustion, MJ/kg 42.5 43.0
Cetane Number 51 45




2. DESCRIPTION OF EXPERIMENTS
2.1 EQUIPMENT AND INSTRUMENTATION

The present work used JP-8 fuel in a Ricardo Hydra E6 single-cylinder DI diesel engine treated with various ceramic
coating insulation schemes to observe fuel consumption and emissions under a variety of operating conditions.
Hexadecane (C,¢H,,, CN = 100) was used as a baseline fuel for comparison purposes. Table 2.1 provides the basic
specifications of the engine and Figure 1 provides a cross-sectional view of the combustion chamber showing the
toroidal bowl piston. Measured data included load, speed, crank angle, needle lift, cylinder and fuel line pressure, fuel
mass flow rate, air volume flow rate, intake and exhaust gas temperatures, coolant and lube oil temperatures, and
emissions of NO and NOx, unburned hydrocarbons (UHQC), and_' gmoke.

Engine loadmg was provided by a digitally-controlled DC motoring dynamometer interconnected to the utility
grid through a KTK power control and signal conditioning system. Speed, load and injection timing could be remotely
controlled from an instrument panel which provided readouts of these parameters, plus coolant, lubricant, and intake
and exhaust manifold temperatures. Additional digital thenﬁocouples were used to monitor room air temperature, NOx
sampling line temperature and air filter intake temperature. A sling psychrometer was used to determine combustion
air humidity. The engine coolant temperature and oil temperature could be individually controlled with a pair of
thermostats that regulate the flow of laboratory water through heat exchangers that provide cooling for the engine fluids.
The coolant temperature was maintained at 80 °C and the oil temperature was maintained at 55 °C.

Exhaust smoke was measured with An AVL 415 Variable Sampling Smoke Meter. - Oxides of nitrogen were
measured with a Thermo Environmental Instruments Model 10AR Chemiluminescent NO-NOx Analyzer in conjunction
with a Model 800 Heated Sample Conditioning Unit and a heated sampling line. The NOx system was calibrated
periodically against 2000 ppm NO in nitrogen calibration gas. Unburned hydrocarbons were measured with a two-
channel Cambustion HFR400 Fast Response FID system. One sampling probe was located in the exhaust port adjacent
to the head, 73 mm downstream from the exhaust valve stem. The close proximity of this probe to the exhaust valve,
and the rapid time response of the instrument, allowed time resolved measurements of cyclic variations of UHC. The
other probe was mounted in the exhaust pipe about 4 m downstream of the exhaust port to obtain an average UHC
reading after thorough mixing of the exhaust stream.

Intake air flow was measured with a Meriam Model 50MC2-2F Laminar Flow Element equipped with a digital
manometer to read the pressure differential, and an inclined water manometer for calibration purposes. Fuel mass flow
rate was monitored with an AVL Model 730 gravimetric fuel balance. Cylinder pressure was monitored with a Kistler
6121 Piezo transducer and charge amplifier. The fuel injector was equipped with a Wolff Controls Hall effect needle
lift sensor which was used in conjunction with a Wolff Injector Signal Processor.

The cylinder pressure, fuel pressure, needle lift and crank angle were recorded with a Data Precision DATA
6000 digital wave form analyzer at a data rate of 25 KHz. The data was stored on diskettes for subsequent analysis.
Ignition delay and injection duration were determined from the digital wave form data. The 25 KHz data rate translates
to 40 microseconds per data ppint, which then represents the uncertainty for both the ignition delay and the injection
duration. Table 2.2 gives the test matrix of load, speed and injection timings used for the experiments.



Figure 2.1
Cross Section of Ricardo Hydra DI Diesel Combustion Chamber



Engine

Number of Cylinder 1
Bore . 80.26 mm
Stroke 88.90 mm
Swept Volume 450 ml
Maximum Speed 75 revls
Maximum Power §KW .4
Maximum Cylinder Pressure 120 bar
Compression Ratio 20:1
Connecting Rod Length 15.80
Squish Height 0.82542 mm
Swirl 3.57
Valve Timing: Intake Opens 10 BTDC
Intake Closes 42 ATDC
Exhaust Opens 58 BBDC
Exhaust Closes 10 ATDC

Injection System

Injector Pump

Micro Bosch size 4 type EA 4000 1.900

Nozzle -

4 holes * 0.21 mm dia. * 155

Nozzle Opening Pressure

250 bar = 25 Mpa

Injector KBEL 88 PV 1187

Lift Pump Mico Bosch 9440 030 003

Dynamometer

Manufacturer McClure

Type Shunt wound dc with separate excitation
Rating 30 KW continuous

Max. Speed 100 rps

Control KTK type 6P4Q3D converter for motoring and

regenerative loading




2.2 CERAMIC COATINGS

The piston, cylinder head, valves and cylinder liner were sent to Adiabatics, Inc. in Columbus, IN for coating.
The piston crown and bow] received a 0.25 mm shurry- sprayed coating of partially stabilized zirconia (PSZ) consisting
of 85 percent partially calcium stabilized cubic zirconia, 10 percent tungsten cobalt chrome powder, and 5 percent
chrome oxide. The head and valves were coated with a 0.5 mm thermal barrier coating incorporating 5 percent hollow
alumina spheres in a slurry of 65 percent silica, 15 percent PSZ, 7 percent tungsten chrome powder, and 8 percent
chrome oxide.

The cylinder liner was bored 0.2 mm over the entire length plus an additional 0.75 mm in the region above the
top ring reversal (TRR). The region above the TRR was plazma sprayed with ytria stabilized zirconia, and then the
entire length of the liner was given a 0.2 mm wear coat of slurry sprayed PSZ.

2.3 TEST MATRIX

A full set of data runs were conducted with each of the two fuels, hexadecane and JP-8, and for each of five
different engine builds utilizing different combinations of coated components including: (1) baseline (no coatings), (2)
coated piston alone, (3) coated head alone, (4) coated liner alone, and (5) coated piston, head and liner together. A full
set of runs consisted of the test matrix shown in Table 2.2 involving three engine speeds, three loads, and three injection
timings, for a total of 27 runs per engine build, per fuel (270 total runs). A constant coolant temperature of 353 K (80
°C) and constant oil temperature of 328 K (55 °C) were used for all runs.

TABLE 2.2 - Test Matrix

ENGINE SPEED (RPM) 1500 2000 2500
INJECTION TIMING (Degrees BTDC) 8 12 16
TORQUE (NM) 8 12 16
LOAD
BMEP (BARS) 2235 3.35 447

A typical set of test data for one engine build (all surfaces coated ) and one engine speed (2500) rpm for
JP-8 fuel is shown in Table 2.3.



Table 2.3 - Sample Experimental Data

Test Data For JP-8 Fuel At 2500 RPM With All Coated Parts Installed

RUN NUMBER 1 2 3 4 5 6 7 8 9
TORQUE (NM) 8 12 16
INJ. TIMING (DBTDC) 8 12 16 8 12 16 8 12 16
INTAKE AIR TEMP. °C 33 33 34 34 34 34 33 33 34
COOLANT TEMP.°C 81 82 82 82 82 82 81 82 82
OIL TEMP. °C 55 56 56 56 56 56 56 56 56
EXHAUST TEMP. °C 242 238 239 287 4 282 297 338 336 336
UHC (ppm C;Hy) 700 640 600 520 570 210 410 410 650
SOOT CONC. (mg/m3) 1 1 2 7 7 12 40 28 15
Nox (ppm) 450 600 800 750 950 1375 1050 1325 1875
No (ppm) 375 550 750 650 825 1200 925 1150 1650
INTAKE AIR (CFM) 19.41 19.41 19.41 19.14 19.01 19.27 18.74 18.87 18.61
FUEL CONS. (g/min) 123|123 |126 |158 |154 |169 |20 19.7 | 202
IGNIT. DELAY (msec) 0.72 0.69 0.73 0.66 0.66 0.68 0.64 0.64 0.71
INJ. DURATION (msec) 0.74 0.71 0.68 0.89 0.85 1 1 11 1
AIR/FUEL RATIO 50 50 49 38 39 36 30 30 29
POWER OUTPUT (W) 2094 2094 2094 3141 3141 3141 4188 4188 4188
BSFC (gr/kwh) 352 352 361 302 294 323 287 282 289
BMEP (bars) 2.23 2.23 2.23 3235 3.35 3.35 4.47 447 4.4.7
INJ. DURATION (Deg) 11 11 10 13 13 15_ 15 15 15
IGNIT. DELAY (Deg) 11 10 11 9.9 9.9 10 9.6 9.6 10.6
VOL. EFFICIENCY (%) 98 97 98 96 95 97 94 95 94
FILTER TEMP. °F 85 80 79 84 80 80 79 86 79
ROOM TEMP, °F 83 77 78 82 79 78 77 83 80
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3. EXPERIMENTAL RESULTS

3.1 GENERAL OBSERVATIONS

Insulating the combustion chamber of an internal combustion engine should improve the thermal efficiency
according to the second law of thermodynamics, but, over the years, researchers who have investigated the use of
ceramic insulation in diesel engines have obtained conflicting results. Some have obtained improvements, others have
noted a deterioration in performance. Some of the reasons for the discrepancies can be attributed to different engine
configurations and operating parameters, while others can be attributed to the complex nature of the diesel combustion
process. It becomes apparent that pros and cons have to be weighed against each other when dealing with selectively
insulating combustion chamber surfaces, leaving one to select the option that works best for any given application.
Operating parameters, e.g., speed and load, play a large role in the performance and emissions results.

A detailed analysis of the experimental data obtained from this project will be limited to the high-speed (2500 rpm),
high-load (16 N-m) condition because this is the most important operating regime in terms of total fuel consumption
and total emissions. Detailed analysis will also be limited to the results for the least advanced injection timing
(8°BTDC) because, as illustrated in Table 3.1 below, with the noted exception of soot production, the less advanced
timing generally produced better results than the more advanced timings for both JP-8 and hexadecane at 2500 RPM
and 16 N-m load.

Table 3.1 - Effect of Injection Timing on BSFC and Emissions at 2500 RPM and 16 N-m

BSFC NO Soot UHC

Timing (DBTDC) 8 12 |16 | 8 12 (16 | 8 12 116 |8 12 | 16
Baseline JP-8 v v v v

Hexa | v v Ve Ve
Coated Piston JP-8 v v v |V

Hexa | v v v v
Coated Liner JP-8 Ve v v v

Hexa | v v Ve
Coated Head JP-8 e v e "4

Hexa Ven 4 VaE "4
All Coated JP-8 v v v Ve

Hexa van 4 e "4

(Note: « denotes condition where lowest reading was obtained)

Before analyzing in detail the specific results for the case of high speed and load, a few general observations can be
made based on the entire data set. A full set of data plots for BSFC, NO, UHC, and soot for the entire test matrix are
provided in Appendices A, B, (;: and D, respectively. General observations that can be drawn from these plots include
the following,
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BSFC (Figures A.1 - A.18)

1) The coated liner produced the highest fuel consumption under all conditions for hexadecane fuel, but had among
the lowest fuel consumption figures for JP-8 fuel.
2) The coated piston and coated head reduced fuel consumption relative to the baseline engine under most conditions
for hexadecane and at high speed (2500 RPM) for JP-8.

NO (Figures B.1 - B.18)

1) With hexadecane fuel: All insulation schemes reduced NO emission below baseline at low speed, but at higher
speeds only the coated piston and coated liner were effective at reducing NO.

2) With JP-8 fuel: The coated liner effectively reduced NO at low;speed, while at higher speeds, both the coated liner
and the coated piston reduced NO relative to the baseline engine by up to 50 percent.

UHC (Figures C.1 - C.18)

3) With hexadecane fuel: The coated piston and coated head effectively reduced UHC emission by up to 50 percent
at the low speed and the high speed, but not at 2000 rpm. The coated liner and coating all surfaces increased UHC
above baseline.

4) With JP-8 fuel: The coated head greatly reduced UHC emission below baseline by as much as 60 percent, while
the coated liner showed less dramatic, but still significant reductions in UHC. The coated piston generally increased
UHC above baseline.

Soot (Figures D.1 - D.18)

1) For both fuels, the coated liner generally increased soot emission above baseline, particularly at low speed and high
load when smoke production is highest.

2) At low speed the other insulation schemes reduced smoke slightly relative to baseline, while at high speed the
coated piston increased smoke slightly. '

3.2 DETAILED ANALYSIS OF HIGH SPEED (2500 RPM) HIGH LOAD (16 N-m) DATA

Figure 3.1 compares the values of BSFC and emissions for each of the five engine builds for JP-8 fuel at 2500 RPM,
16 N-m, and 8 °BTDC injection timing, while Figure 3.2 does the same for hexadecane. From the bar graphs, it is
evident that the coated piston reduced fuel consumption slightly (3-4 percent) and NO emission by 20-30 percent
relative to the baseline engine, but at the cost of increased UHC and soot emissions. The coated head reduced fuel
consumption by 3 percent and UHC emission by 50 percent, but at the cost of increased NO and soot. The coated liner
by itself has little effect on BSFC, but effectively reduced NO. Operating the engine with all of the coated components
installed resulted in increased NO, UHC, and soot for hexadecane fuel, and increased NO, but reduced UHC, for JP-8.




JP-8 2500RPM 16N-m 8DBTDC

1000
800 ;
600 ;‘
400
200 -

Baseline Piston Liner Head All

[ ] BSFc (griowh)

UHC (ppm C3Hg) [ NO (ppm) Bl soot (mgim~3)

Figure 3.1 - Comparison of BSFC and Emissions for JP-8 Fuel at 2500 rpm, 16 N-m, and 8
°BTDC Injection

Hexadecane 2500 RPM 16 N-m 8 DBTDC
1000

800

600

400 -

200 +

- Baseline Pwi‘ston Liner Hed All

D BSFC (gr/kwh)

UHC (ppm C3H8) - NO (ppm) Il soot (mgm~3)

Figure 3.2 - Comﬁarison of BSFC and Emissions for Hexadecane Fuel at 2500 rpm, 16 N-
m, and 8 °BTDC Injection
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3.2.1 Effect of Coatings on Ignition Delay

Figure 3.3 summarizes the ignition delay data for the high speed, high load case. With hexadecane fuel, all of the
insulated cases reduced the ignition delay with respect to the baseline engine as one would expect a priori based on the
assumption that insulated combustion chamber surfaces will increase the intake air temperature, which should result in
shorter ignition delay. However, in the case of JP-8 fuel, the coated piston caused increased ignition delay, while the
other insulation schemes resulted in negligible variation from the baseline engine. The result with the coated piston and
JP-8 is in agreement with results reported by Dickey [11] and Assanis, et. al, [18]. They offer various explanations for
why the insulated piston produces longer ignition delays than the baseline case, contrary to intuition. They postulate
that the higher gas temperatures alter the dynamics of the fuel injector causing lower intitial rates of injection, and thus
a decrease in spray velocity and a slowing down of the breakup and vaporization processes, increasing the time required
to form a combustible mixture. 4

Beg, et. al, [22] expanding on the arguments of Dickey and Assanis, state that the spray velocity decreases in the case
of a coated piston, resulting in a slowing down of the breakup and vaporization processes of the impinged fuel. The
possibility also exists that, even though the piston crown coating in this study went through a densification process to
reduce porosity, the process may not have totally eliminated porosity in the coating of the torroidal bowl. This area may
indeed act as a capacitor as suggested by Beg, et. al, [24], absorbing and storing some of the fuel that comes into contact
with the porous surface, producing both a longer ignition delay and a lower premixed combustion fraction.

At 2500 rpm, 8 degree injection, and high load for JP-8 fuel, the coated liner and coated head had the shortest delay
periods as seen in Figure 3.3. In the coated head case the non-insulated piston and non-insulated liner are each cooled
effectively by thermostatically controlled circulating oil and coolant respectively. Thus the air in the cylinder receives
less heat transfer from the cooler temperature walls and therefore the intake air mass is higher than for the coated piston

2500 RPM 16 N-m 8 Deg BTDC

Baseline Piston Lin_er ead All
Hexadecane JJjj JP-8
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case. The result is better fuel-air mixing and a more thorough combustion process as indicated by the shorter ignition
delay, and the low BSFC and UHC. There may also be heat transfer from the hotter head surface to the injector tip
resulting in reduced fuel viscosity and improved spray characteristics [8].

The ignition delay period with JP-8 fuel increased for all engine builds relative to hexadecane, which was to be
expected given the lower cetane number (45 vs 100).

3.2.2 Effect of Coatings on BSFC

The BSFC results at 2500 RPM, 16 N-m, and 8 °BTDC are summarized in F igure 3.4 flor all insulation schemes.
Minor improvements in BSFC on the order of 2-4 percent were-obtained for JP-8 with the coated piston, coated liner,
and coated head configurations. But coating all the surfaces increased fuel consumption slightly. With hexadecane fuel,
the coated piston produced the best fuel economy, while the ¢oated liner produced the worst. In general, fuel
consumption with JP-8 was higher than for hexadecane as a result of the lower cetane number and higher viscosity.

2500 RPM 16 N-m 8 DBTDC

BSFC (gr/kwh)
N
~l
o

N
(@]
o

250

Baseline Piston Liner Head All

| Hexadecane [ JP-8

Figure 3.4 - BSFC Comparison for all Builds at 2500 RPM, 16 N-m and 8 °BTDC
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3.2.3 Effect of Coatings on Nitric Oxide (NO) Emissions

NO emissions are compared between the five different engine builds at 2500 RPM, 16 N-m, and 8 °DBTDC in
Figure 3.5. Nitric oxide is formed in diesel engines when nitrogen and oxygen in the cylinder react at high temperature
during the combustion process. In general, higher peak cylinder temperatures result in higher levels of NO. Typically,

‘longer ignition delays tend to increase the premixed combustion fraction thereby causing higher peak temperatures and

NO emissions. But in our experiments the coated piston had low NO emissions even though the ignition delay was the
longest. This would imply that the peak cylinder temperatures, and consequently peak cylinder pressures, were
relatively low, even with the longer ignition delay periods. This is confirmed by the cylinder pressure traces r-0
diagram) shown in Figure 3.6. It is seen that the lower NO readings for the coated piston and coated liner correspond
with the lower cylinder pressure for these cases, while the high NO readings for the coated head and all-surfaces cases
correspond with the higher cylinder pressures for these cases. The.higher cylinder pressures, which accordingly imply
higher peak gas temperatures, suggests a more complete burning of the fuel in the coated head and all-surfaces cases.
The improved fuel economy and low UHC for these builds would also substantiate such a condition. The coated head,
which is also common to all-surfaces build would appear to be the controlling factor for the improved combustion. As
stated earlier, this could be a result of the hotter cylinder hfad surface temperature increasing the temperature of the

injector tip and thereby affecting the injection process in a positive way in terms of improved atomization and mixing
as proposed by Alkidas [8] and Dickey [11].

JP-8 generally produced higher levels of NO emissions throughout the test spectrum. The higher NO levels can be
attributed to the longer ignition delay characteristics (or larger premixed fraction) of the JP-8 fuel resulting in higher
peak cylinder temperatures.

2500RPM 16 N-m 8 DBTDC
1200
1000

Baseline Piston Liner Head = Al

. 1| Hexadecane JJjj JP-8

Figure 3.5 - NO Comparison at 2500 RPM, 16 N-m, and 8°BTDC
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Figure 3.6 - P-O Diagrams for 2500 RPM, 16 N-m, and 8 °BTDC Injection.

16




3.2.4 Effect of Coatings on Hydrocarbon Emissions

Generally, UHC emissions were load sensitive and minor fluctuations in load conditions greatly affected the UHC
present in the exhaust line. For JP-8 at 2500 rpm and high load, the coated piston yielded the highest UHC readings
while the coated head produced the lowest as seen in F igure 3.7. The long ignition delay associated with the coated
piston case (Figure 3.3) may explain the high UHC readings for the coated piston since more fuel is burned later in the
cycle during the expansion stroke with a higher probability of wall quenching. On the other hand, better combustion
efficiency as evidenced by the lowest BSFC and the short ignition delay period, would explain why the coated head
exhibited the lowest UHC. There is in fact reasonable correlation between ignition delay and UHC emission for all the
builds, with shorter ignition delay resulting in lower values of UHC.

Hydrocarbon readings were typically higher with the JP-8 fue'll than for hexadecane, in particular for the baseline
and coated piston builds. An increase in UHC with JP-8 would be expected as a result of the lower cetane number and
longer ignition delay resulting in more fuel not being fully combusted. In the case of the coated liner, the UHC
emissions were nearly the same for the two fuels, as were the lengths of the ignition delay period.

The large reduction in UHC for the coated head is, again, most likely related to temperature effects on the injector

spray characteristics. These same effects are present, as well, for the all-surfaces case, and help to mitigate the tendency
of the coated piston to increase UHC.

2500 RPM 16 N-m 8 DBTDC
1000

800

600

UHC (ppm C3H8)

b

Baseline Piston Liner Head All

Hexadecane JJjj JP-8

Figure 3,7 - UHC Comparison for 2500 RPM, 16 N-m, and 8 °BTDC
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3.2.5 Effect of Coatings on Soot Emissions

In order to lower soot emissions, a diesel engine needs a lean, high-temperature environment. Unfortunately, the
conditions that reduce soot create an environment that increases NO emission. Smoke levels in gr/m? of soot for all
engine builds at 2500 RPM, 16 N-m, and 8 °BTDC are shown in Figure 3.8. At this RPM, the coated piston and the
coated liner consistently exhibited the highest soot emission. At lower speeds the coated liner, in particular, produced
very heavy smoke under heavy load (see Figures D.1 - D.12). The high levels of soot production for the coated head
and coated liner cases correlate with the reduced levels of NO emission observed. Correspondingly, the low smoke
characteristics of the baseline, coated head, and all-surfaces builds, correlates with the higher levels of NO observed for
these cases. The high levels may also be attributed to the extended diffusion combustion mode, caused by late burning
of the absorbed/trapped fuel in the piston crown. The result would be a richer fuel mixture. Coating all the surfaces

resulted in the lowest amount of soot due to the presumed higher combustion temperature persisting throughout the
combustion cycle. '

In all cases soot levels went up with JP-8 relative to hexadecane, indicative of the late combustion of the lower
cetane number fuel. Since, at 2500 RPM, soot levels were fairly low to begin with, increases in soot emissions for JP-8
were not  significant except for the coated liner which, for unexplainable reasons, produced very low smoke with

hexadecane fuel.

2500 RPM 16 N-m 8 DBTDC
400 '
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o
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Soot (mg/m”3)
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Baseline Piston Liner Head All

Hexadecane JJj JP-8

Figure 3.8 - Cognparison of Soot Emissions for 2500 RPM, 16 N-m, and 8 °BTDC
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3.2.6 Effect of Coatings on Exhaust Gas Temperature

Figure 3.9 summarizes the results for exhaust gas temperature at 2500 RPM, 16 N-m, and § °BTDC injection for all
engine builds. Figures 3.10 a-c on the next page plot exhaust temperature versus load for JP-8 fuel for each of three
engine speeds. From Figure 3.10 it is observed that exhaust temperature increases with engine speed as would be
expected due to decreasing time for heat loss from the gas to the surrounding chamber walls. The coated liner and the
coated piston consistently produce the highest exhaust temperature and the coated head consistently produces the lowest
exhaust temperature. This would appear to be in disagreement with the NO emissions and cylinder pressure data, but
exhaust temperature is not necessarily directly related to peak combustion temperature (which controls NO emission
and peak cylinder pressure). Exhaust temperature is dependent on the heat release profile and the magnitude of the
premixed combustion fraction relative to the diffusion fraction, and also on the conductivity of the solid surfaces
exposed to the expanding gas. The insulated head produces low gxhaust temperature as a result of its relatively short
ignition delay shifting heat release earlier in the cycle which allows more time for expansion cooling and heat transfer
from the hot gases. In addition, the uninsulated piston and liner provide effective heat transfer paths to the oil and the
coolant. The coated piston and liner produce higher exhaust temperatures through a combination of heat release shifted
later in the expansion stroke and effective thermal barriers on the highly-cooled piston and liner walls.

As seen in Figure 3.9, There was an increase in the exhaust temperature for JP-8 fuel relative to hexadecane for all
the coating schemes except the coated piston which registered a slight decrease. It is unclear why the decrease occurred
for the coated piston case since it would be expected that a longer ignition delay for JP-8 (0.82ms vs 0.42ms for
hexadecane) would result in later burning of the fuel. All other cases showed a correlation between the ignition delay
period, and the exhaust temperature change, i.e. a longer ignition delay would cause a rise in the exhaust temperature.
A summary of these results is shown in Table 7.

2500 RPM 16 N-m 8 DBTDC
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Figure 3.9 - Comparison of Exhaust Temperature for 2500 RPM, 16 N-m, and 8 °BTDC
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Figure 3.10(a) - Exhaust Temperature Vs Load for JP-8 at 1500 RPM
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Figure 3.10(b) - Exhaust Temperature Vs Load for JP-8 at 2000 RPM

2500 RPM 8 DBTDC

—-—
& 500 Base
oD
& 400 o
= = Piston
2300 .
= 200 Head
B v
® 100 Liner
< . I
oo All

2 3 5

a
BMEP (bar)

Figure 3.10(c) - Exhaust Temperature Vs Load for JP-8 at 2500 RPM
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IGNITION DELAY % CHANGE EXHAUST % CHANGE

(msec) TEMP (°C)
[FUEL HEX IP-g HEX | 1p-8
BASELINE 0.52 0.64 +23 350 | 364

COATED PISTON 0.42 0.82 +95 434 405

COATED LINER 0.46 0.56 +30 358 384
ALL SURFACES 0.42 0.64 +53 268 338

+4

7 1

+7
035 0.59 59 230 | 332 +44 I

(Note: coated piston is highlighted to indicate the anomaly)

COATED HEAD

3.2.7 Effect of JP-8 on Cylinder Pressure

Ilustrations of the differences in cylinder pressures for JP-8 and Hexadecane for the five different engine builds are
shown in Figures 3.11 a-e. They clearly show the increased ignition delay for the JP-8 fuel which results in a larger
premixed combustion fraction and therefore a higher rate of pressure rise at the start of combustion and higher peak
cylinder pressures.
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Figure 3.11(a) - P-@ Comparison for JP-8 and Hexadecane for Baseline Engine
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Figure 3.11(b) - P-© Comparison for JP-8 and Hexadecane for Coated Piston Build
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Figure 3.11(¢) - P-© Comparison for JP-8 and Hexadecane for Coated Head Build
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Figure 3.11(d) - P-© Comparison for JP-8 and Hexadecane for Coated Liner Build

Cylinder Pressure Comparison

cyl vPre&eure (atm)
8 53 8 3

llllllllllllllllll[lllllll'lllllllllll

All Surfaces Coated —
2500 RPM 8 Deg BTDC

.
..bbhnintthic..
.a

-80 40 -20 0 20 40 €0 80
Crank Angle (deg) '

Figure 3.11(e) - P-© Comparison for JP-8 and Hexadecane for All-Surfaces Build

-20 0 20 40 60 80



4. CONCLUSIONS

The engine performed satisfactorily on JP-8 fuel. No abnormal or adverse operating characteristics were observed,
in either the baseline all-metal configuration, or with any of the insulation schemes investigated. It is therefore
concluded that JP-8 is a viable alternative fuel for use in DI diesel engines with thin ceramic thermal barrier coatings
applied to one or more combustion chamber surfaces.

For the Ricardo Hydra DI diesel engine, insulating the various surfaces offered mixed results with either performance
or emissions being improved or compromised depending on the insulation scheme and the operating conditions. It was
generally found that different operating conditions affected the engine in diverse ways, with speed, load, and to a lesser
extent, injection timing, affecting the relative levels of emissions and BSFC for the various insulation schemes. It was
decided to place greater emphasis on the high-speed, high-load condition because of the applicability to typical ground-
based vehicle applications and because changes in BSFC and emissions have the greatest total impact under these
conditions. Even then, no individual scheme was significantly more beneficial than any of the others.

Based on the results at 2500 RPM, 16 N-m load, and 8 °BTDC injection timing for JP-8 fuel (Figure 3.1, page 12),
the percentage increase/decrease in BSFC, UHC, NO, and Soot for each of the insulation schemes compared to the
baseline engine are given in Table 4.1.

Table 4.1 - Percent Increase/Decrease for Insulation Schemes Relative to Baseline
For 2500 RPM, 16 N-m, 8 °BTDC Injection

Insulation Scheme BSFC UHC NO Soot
Coated Piston -2.8% +11.4% -29.4% +467%
Coated Liner | 2.8% -17.1% -17.6% +677%
Coated Head -4.6% -66.1% +17.6% +61%
All Surfaces +1.0% -34.3% +8.8% -18%

It is obvious from Table 4.1 (and Figure 3.1) that the individual coating schemes investigated can produce
improvements in one or more categories of emissions, but at the expense of an increase in another category. The choice
of one insulation scheme over another, depends on which emission product is considered most critical. If hydrocarbons
are the major emission concern, then coating the head is the best choice, with the added benefit of providing the greatest
improvement in fuel economy. If oxides of nitrogen are of greatest importance, then coating the piston is the best
choice. If soot is the major consideration, then coating all of the combustion chamber surfaces is the only configuration
that consistently reduced soot emission below the baseline level, while also significantly improving UHC emissions
(but at the expense of slightly increased NO and fuel consumption). Given all of the trade-offs represented by the data
in Table 4.1, the best choices might well be either coating all surfaces of the combustion chamber to achieve reduced
particulate and hydrocarbon emissions with little effect on NO emission and fuel cohsumption, or coating the head alone
to achieve the improved fuel economy and UHC emission.

Other combinations of insulated surfaces are possible, but were not investigated, i.e. coated piston and head together,

coated piston and liner together, and coated head and liner together. These combinations should be investigated in the
future for any possible advantage that they might offer.
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Figure A.3 - BSFC Vs Load for Hexadecane at 1500
RPM and 16 DBTDC
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Figure A.8 - BSFC Vs Load for Hexadecane at 2000
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Figure A.12 - BSFC Vs Load for JP-8 at 2000 RPM
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Figure D.9 - Soot Vs Load for Hexadecane at 2000

RPM and 16 DBTDC

41

40
Jp8 2000 RPM 8 DBTDC
35
-
% Bareine
& 2. a
34 Cosred Piston
o}
520 ..
'g :E Costed Liner
Q 15 i
A Surfaces
10
L.
s o Conted Heod
[ ST S e kel L LT 2
2 3 4 R
BMEP (bar)

Figure D.10 - Soot Vs Load for JP-8 at 2000 RPM

and 8 DBTDC
40
JP8 2000 RPM 12 DBTDC
35
——
30 Baseline
? 2 A
§.§ Coated Piston
ig 20 -.-
,g 3 Costsd Liner
Q 15 X
A Sutfaces
10
R
s Coated Hesd
,.-—-""“"'.
[ 2 e : 4
2 4 8
BMEP (bar)
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Figure D.17 - Soot Vs Load for JP-8 at 2500 RPM

and 12 DBTDC
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Figure D.18 - Soot Vs Load for JP-8 at 2500 RPM
and 16 DBTDC
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